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Persistence in higher dimensions: A finite size scaling study
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We show that the persistence probabilityP(t,L), in a coarsening system of linear sizeL at a timet, has the
finite-size scaling formP(t,L);L2zu f (t/Lz), whereu is the persistence exponent andz is the coarsening
exponent. The scaling functionf (x);x2u for x!1 and is constant for largex. The scaling form implies a
fractal distribution of persistent sites with power-law spatial correlations. We study the scaling numerically for
the Glauber-Ising model at dimensiond51 to 4 and extend the study to the diffusion problem. Our finite-size
scaling ansatz is satisfied in all these cases providing a good estimate of the exponentu.

PACS number~s!: 05.40.2a, 05.50.1q, 05.70.Ln
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Persistence decay has been the subject of conside
research activity in recent years. The basic quantity un
investigation is the persistence probabilityP(t), which is the
probability that a given stochastic variable with zero me
retains its sign throughout the time interval@0:t#. For a large
number of systems, it was found that at asymptotic tim
t,P(t);t2u, whereu is in general, a dimension-depende
nontrivial exponent, believed to be unrelated to the ot
known exponents@1#. The nontriviality of u is particularly
true for spatially extended systems where the time evolu
of the stochastic field at one lattice site is coupled to tha
its neighbors, making the effective single-site evolution no
Markovian.

In recent times, the spatial aspects of the persistence p
lem have also come under study. In particular, the spa
temporal evolution of the set of persistent sites has b
studied by several authors. These include the diffusion pr
lem in d51 @2#, Ising models in spatial dimensiond51
@3–5# andd52 @6#, and the generalizedq-state Potts mode
in d51 @7#. It was found that the interplay between pers
tence decay and the underlying coarsening process lea
dynamical scaling and fractal formation in the spatial dis
bution of the persistent sites. Such fractal structure has
been reported in an experimental study of breath figures@8#.

In the present paper, we propose a scaling form for
persistence probabilityP(t,L) as a function of the lattice
sizeL and timet. We use physical arguments to motivate t
scaling form in the context of the Ising model and show t
the scaling reflects the fractal nature and power-law corr
tions in the spatial distribution of persistent sites. We prov
numerical evidence for its validity through simulations
spatial dimensiond51 to 4. The analysis is further extende
to the diffusion problem where approximate analytic theor
have been used to predictu in all dimensions. We argue tha
fractal formation in diffusion should take place in all dime
sions and provide supportive results from simulations.

Let us consider the Ising model in ad-dimensional geom-
etry of linear sizeL. We start from an initial random con
figuration and quench the system, say, to the temperatuT
50. As a result, the spins evolve in time following th
Glauber dynamics, lowering the total energy of the config
ration in the process. In the course of time, domains of p
tive and negative spins form, with characteristic length sc
PRE 621063-651X/2000/62~6!/7755~4!/$15.00
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j(t) growing as a power law in time i.e.,j(t);t1/z, wherez
is the dynamical exponent for the coarsening process@9#.
The fraction of persistent spins decays as a power of ti
P(t,L);t2u as long ast!t* ;Lz. For t@t* , the domain
cannot grow any further because of the finite system size
persistence probability stops decaying, attaining a limit
valueP(`,L);L2zu. This happens as long as

zu

d
,1. ~1!

For zu.d, persistence probability will decay to zero fo
any lattice sizeL. Also we assume that there is no ‘‘block
ing,’’ whereby a finite fraction of spins never flip, leading
a limiting valueP` independent of finite-size effects. Such
situation is believed to occur in Ising model for dimensio
d.4 @10# and in disordered systems@11#.

The above behavior of the persistent fractionP(t,L) for
finite lattice sizes can be summarized in the following d
namical scaling form:

P~ t,L !5L2zu f ~ t/Lz!, ~2!

where the scaling functionf (x);x2u for x!1 and f (x)
→constant at largex. Similar finite-size scaling ideas hav
been used in a previous work in the context of the glo
persistence exponent for nonequilibrium critical dynam
@12#.

The finite-size scaling form given by Eq.~2! implies
the presence of scale-invariant spatial correlations in the
tem, characteristic of fractals. To show this, we consider
two-point correlation functionC(r ,t), which we define as
the probability of finding a persistent spin at a distancer
from another persistent spin. For ad-dimensional system
C(r ,t) satisfies the normalization condition*0

LC(r ,t)ddr
5LdP(t,L). After substituting Eq.~2!, this becomes

E
0

L

C~r ,t !r d21dr;Ld2zu f ~ t/Lz!. ~3!

Let us rewrite this equation in terms of a new functio
F(a,b)5azuC(a,b) and dimensionless variablesx5r /L
andt5t/Lz:
7755 ©2000 The American Physical Society
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F~Lx,Lzt!xd212zudx; f ~t!. ~4!

Since the righthand side~RHS! of the equation has no
explicit L dependence, the left-hand side~LHS! should also
be likewise. This is possible only ifF(a,b)5g(ba2z),
whereg(h) is given by the integral relation

t d/z2uE
t

`

hu2(11d/z)g~h!dh;z f~t!. ~5!

Using the above equation, the limiting behavior of t
function g(h) for small and large values of the argume
could be deduced from the known behavior of the funct
f (t). Considert @1, wheref (t) is constant. From Eq.~5!,
this implies thatg(h) is constant for largeh. In the other
extreme oft !1, f (t);t2u. We split the integral in Eq.~5!
as*t

`5*t
a1*a

` and note thatg(h) is constant in the secon
integral for sufficiently largea. The second integral vanishe
as t d/z2u as t→0, whereas the RHS diverges ast2u. This
can be consistent only if the first integral diverges ast2u,
which would imply thatg(h);h2u as h→0. This leads to
the following dynamical scaling form forC(r ,t):

C~r ,t !5r 2zugS t

r zD . ~6!

For small separationsr !t1/z, this scaling form implies
scale-free correlations, i.e.,C(r ,t);r 2zu, characteristic of a
fractal with fractal dimensiondf5d2zu. On the other hand
over larger length scales,C(r ,t);t2u, which is indicative of
the absence of any spatial correlations. This scaling desc
tion was introduced by us@4,5# in the context ofA1A→B
model, and later verified numerically in a two-dimension
Ising model@6# also.

To check the finite-size scaling form given by Eq.~2!, we
simulate Ising spin systems of various sizes in spatial dim
sion d51 to 4. Starting from a random initial configuratio
the spins are quenched to zero temperature and are up
sequentially using the Glauber updating rule by which a s
is always flipped if the resulting energy changeDE,0,
never flipped ifDE.0, and flipped with probability1

2 if
DE50. One MC time step was counted after every spin

FIG. 1. The persistence probabilityP(t,L) is plotted against
time t ~measured in MC steps! for three different lattice sizesL in
the d52 Glauber Ising model.
n

ip-

l

n-

ted
n

n

the lattice was updated once. The persistence probabilit
any time t was determined as the fraction of spins that d
not flip even once until timet since the time evolution
started. The data is averaged typically over 1000 star
random configurations for smallL and low d and over 50
starting configurations for largeL and highd.

For T50 Glauber dynamics of the Ising model, the pe
sistence exponentu is exactly known to be 3/8 ind51 @13#.
In higher dimensions, simulations predictu.0.22 (d52)
@10,14,15# andu.0.16 (d53) @10#. In our finite-size scaling
analysis of the simulation data, we adopt the following p
cedure. Ford51, 2, and 3, we fixu at its known value and
adjustz to find the value that gives the best data collapse
all cases, we findz.2, which is the accepted value of th
coarsening exponent for nonconserved scalar models@9#. ~In
d53 Glauber dynamics, a slowert1/3 coarsening has bee
observed before@16#. This is presumably due to lattice e
fects, but we have not seen any signature of this effect in
simulations.! In d54, on the other hand, we fixz at 2, and
adjustu to collapse the data to a single curve. The results
displayed in Figs. 1–4.

In d54, we find that forz52, u50.1260.02 gives rea-
sonably good data collapse over the time scales and sy
sizes studied. Figure 4 shows the scaled data ind54. It may

FIG. 2. Same as Fig. 1, except that the scaling functionf (x)
5LzuP(t,L) is plotted against the dimensionless scaling varia
x5t/Lz. The data for differentL values were found to collapse we
to a single curve foru50.21 andz52.1260.05.

FIG. 3. The scaling functionf (x)5LzuP(t,L) is plotted against
the dimensionless scaled timex5t/Lz for threeL values in thed
53 Glauber Ising model. The observed data collapse has been
tained forz52.05 andu50.166.
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be mentioned that ind54, earlier simulations had suggeste
that the persistence decay might be slower than a power
and perhaps logarithmic@10#. However, the agreement of ou
data with the scaling form Eq.~2! suggests that persistenc
follows a power-law decay ind54 also. Ford.4, blocking
of spins has been shown to lead to a limiting value ofP(t,L)
ast→`, which is independent ofL @10#. We could simulate
only small lattice sizes ford55 from which we cannot make
any conclusive remark at this stage.

In the diffusion problem, we have a scalar fieldf(x,t)
evolving according to the diffusion equation. The initial va
ues f~x,0! are taken to be independent random variab
with zero mean.

]f~x,t !

]t
5¹2f~x,t !,

~7!
^f~x,0!f~x8,0!&5dd~x2x8!.

For this problem, it has been shown using approxim
analytic theories@17–19# that P(t);t2u in all dimensions.
The predicted exponent values in low dimensions were
good agreement with simulation results. The expon
was found to increase with dimension, and has been s
gested to have the asymptotic valueu(d).aAd as d→`.

FIG. 4. The figure shows the scaled probability plotted aga
the dimensionless scaled time in thed54 Glauber Ising model. We
have fixedz52, and find thatu50.1260.02 gives the best dat
collapse.

FIG. 5. The persistence probabilityP(t,L) is plotted against
time t ~measured as the number of MC steps! for three different
lattice sizesL in the d52 diffusion problem.
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The constanta has been estimated to be.0.14 @17,18# and
.0.18 @19# by different authors. Ford51, 2, and 3, the
exponent values are found to beu.0.12, 0.18, and 0.23
respectively.

To simulate Eq.~7! numerically, we use the finite differ
ence Euler discretization scheme on cubic lattices ofLd sites
@17,18#:

f~x,t1Dt !5f~x,t !1aF(
x8

f~x8,t !22df~x,t !G , ~8!

wherex8 runs over all the 2d nearest-neighbor lattice sites o
x in the cubic lattice anda5Dt/(Dx)2,1/2d for stability of
the discretization scheme. We have takena51/4d in our
simulations as this value has been observed to provide
fastest approach to the asymptotic regime@17#.

For the diffusion problem, simple scaling arguments su
gest that the dynamical exponentz52 in all dimensions. In
all dimensions studied, we found excellent scaling collap
with z.2 and theu values quoted above. Upon substitutio
of the exponent values into Eq.~1!, it can be easily seen tha
the condition for fractal formation is satisfied ford51, 2,
and 3. Ford51, this has already been confirmed by an e
lier numerical study@2#. Our results for the persistence pro
ability and the scaling function for three different lattic
sizes ind52 is displayed in Figs. 5 and 6.

It is also possible to extrapolate these results to thed
→` limit using the asymptotic form suggested foru. We
see that in this limit, the LHS of Eq.~1! vanishes as 1/Ad,
leading us to conjecture that fractal formation persists in
dimensions for the diffusion problem.

In conclusion, we have proposed a finite-size scaling
satz for the persistence probability in a coarsening syst
The scaling form corresponds to the fractal structure a
dynamic scaling characterizing the spatio-temporal evolut
of the persistent set. We check the scaling form numeric
for the Glauber-Ising model and for the diffusion problem
Finite-size scaling enables us to study persistence reliabl
higher dimensions. Our results agree with the known val
of u in the case of the Ising model~from d51 to 3! and in
the diffusion problem~we have checked up tod53). For the

t FIG. 6. Same as Fig. 5, except that the scaling functionf (x)
5LzuP(t,L) is plotted against the dimensionless scaling varia
x5t/Lz. The data for differentL values were found to collapse we
to a single curve foru50.186 andz52.0560.04.
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d54 Ising model, we find the signature of algebraic decay
persistence withu.0.12, in contrast with what had bee
reported earlier@10#.
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