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Persistence in higher dimensions: A finite size scaling study
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We show that the persistence probabiltt,L), in a coarsening system of linear sizat a timet, has the
finite-size scaling formP(t,L)~L ~2%f(t/L?), where @ is the persistence exponent amds the coarsening
exponent. The scaling functiof(x)~x~¢ for x<1 and is constant for large The scaling form implies a
fractal distribution of persistent sites with power-law spatial correlations. We study the scaling numerically for
the Glauber-Ising model at dimensids=1 to 4 and extend the study to the diffusion problem. Our finite-size
scaling ansatz is satisfied in all these cases providing a good estimate of the exponent

PACS numbd(s): 05.40—a, 05.50+q, 05.70.Ln

Persistence decay has been the subject of consideraljet) growing as a power law in time i.e¢(t) ~t*?, wherez

research activity in recent years. The basic quantity undeg the dynamical exponent for the coarsening prod€ss
investigation is the persistence probabiRft), whichis the  The fraction of persistent spins decays as a power of time:
probability that a given stochastic variable with zero meanp(t | )~t~¢ as long ast<t* ~LZ For t>t*, the domain
retains its sign throughout the time intery@l:t]. Foralarge  cannot grow any further because of the finite system size and
number of systems, it was found that at asymptotic timegersistence probability stops decaying, attaining a limiting
t,P(t)~t~% whered is in general, a dimension-dependent, yajye P(%,L)~L"?%. This happens as long as

nontrivial exponent, believed to be unrelated to the other

known exponent$l]. The nontriviality of 6 is particularly z6

true for spatially extended systems where the time evolution F<1- @

of the stochastic field at one lattice site is coupled to that of

its neighbors, making the effective single-site evolution non-  For z¢>d, persistence probability will decay to zero for
Markovian. any lattice size_. Also we assume that there is no “block-

In recent times, the spatial aspects of the persistence prokng,” whereby a finite fraction of spins never flip, leading to
lem have also come under study. In particular, the spatiog limiting valueP.. independent of finite-size effects. Such a
temporal evolution of the set of persistent sites has beesituation is believed to occur in Ising model for dimensions
studied by several authors. These include the diffusion probq>4 [10] and in disordered systeni1].
lem in d=1 [2], Ising models in spatial dimensiod=1 The above behavior of the persistent fracti®(t,L) for
[3-5] andd=2 [6], and the generalizegrstate Potts model finite lattice sizes can be summarized in the following dy-
in d=1 [7]. It was found that the interplay between persis-namical scaling form:
tence decay and the underlying coarsening process leads to
dynamical scaling and fractal formation in the spatial distri- P(t,L)=L"2%f(t/L?), 2
bution of the persistent sites. Such fractal structure has also
been reported in an experimental study of breath fig[8gs Where the scaling functiori(x)~x~? for x<1 and f(x)

In the present paper, we propose a scaling form for the—~constant at large. Similar finite-size scaling ideas have
persistence probabilitf?(t,L) as a function of the lattice been used in a previous work in the context of the global
sizeL and timet. We use physical arguments to motivate thepersistence exponent for nonequilibrium critical dynamics
scaling form in the context of the Ising model and show thaf12].
the scaling reflects the fractal nature and power-law correla- The finite-size scaling form given by Ed2) implies
tions in the spatial distribution of persistent sites. We providethe presence of scale-invariant spatial correlations in the sys-
numerical evidence for its validity through simulations in tem, characteristic of fractals. To show this, we consider the
spatial dimension=1 to 4. The analysis is further extended two-point correlation functiorC(r,t), which we define as
to the diffusion problem where approximate analytic theorieghe probability of finding a persistent spin at a distamce
have been used to predi¢in all dimensions. We argue that from another persistent spin. Forcdadimensional system,
fractal formation in diffusion should take place in all dimen- C(r,t) satisfies the normalization conditiofisC(r,t)d

sions and provide supportive results from simulations. =L9P(t,L). After substituting Eq(2), this becomes
Let us consider the Ising model indadimensional geom- )
etry of linear sizeL. We start from an initial random con- f d-14. | d—20 7
figuration and quench the system, say, to the temperdture 0 Clr.yrTdr~L FULS. ®

=0. As a result, the spins evolve in time following the

Glauber dynamics, lowering the total energy of the configu- Let us rewrite this equation in terms of a new function
ration in the process. In the course of time, domains of posiF(a,b)=a%*’C(a,b) and dimensionless variables=r/L
tive and negative spins form, with characteristic length scaland r=t/L*
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FIG. 1. The persistence probabilify(t,L) is plotted against
time t (measured in MC stepgor three different lattice sizek in FIG. 2. Same as Fig. 1, except that the scaling funcfipg
the d=2 Glauber Ising model. =12%P(t,L) is plotted against the dimensionless scaling variable

x=t/L% The data for different values were found to collapse well

1 to a single curve fow=0.21 andz=2.12+0.05.
f F(Lx,L?27r)x?" 1" 20dx~f(7). (4

0 the lattice was updated once. The persistence probability at
any timet was determined as the fraction of spins that did
not flip even once until tim& since the time evolution
started. The data is averaged typically over 1000 starting
random configurations for small and low d and over 50
starting configurations for large and highd.

s ﬁfm For T=0 Glauber dynamics of the Ising model, the per-
r

Since the righthand sideRHS) of the equation has no
explicit L dependence, the left-hand sideHS) should also
be likewise. This is possible only iF(a,b)=g(ba™?,
whereg( ) is given by the integral relation

n?” g (pdn~zf(7). (5)  sistence exponerttis exactly known to be 3/8 id=1 [13].
In higher dimensions, simulations prediét=0.22 (d=2)
[10,14,19 and#=0.16 (d=3) [10]. In our finite-size scaling

Using the above equation, the limiting behavior of theanalysis of the simulation data, we adopt the following pro
functi f Il I I f th i ) i
unction g(#) for small and large values of the argument cedure. Fod=1, 2, and 3, we fix¥d at its known value and

could be deduced from the known behavior of the function™ . . .
f(). Considerr>1, wheref() is constant. From Eq(5), adjustz to find the value that gives the best data collapse. In

this implies thatg(#) is constant for largey. In the other all cases, we find=~2, which is the accepted value of the
extreme ofr<1, f(r)~r°. We split the integral in Eq(5) coarsening exponent for nonconserved scalar mg@¢l$in

_ ; /3 ;
as[”= [+ [* and note thag(s) is constant in the second d=3 Glauber dynamics, a slowet”® coarsening has been

integral for sufficiently larger. The second integral vanishes observed befor¢16]. This is presumably due to lattice ef-
as 7979 as .0, whereas the RHS diverges as’. This fects, but we have not seen any signature of this effect in our

can be consistent only if the first integral divergesrad simulations} In d=4, on the other hand, we fixat 2, and
which would imply thatg(z)— 7 ° as 7—0. This leads to adjusté to collapse the data to a single curve. The results are

) . . displayed in Figs. 1-4.
the following dynamical scaling form fo€(r,t): Ipn 3/:4’ weg:‘ind that forz=2, §=0.12+0.02 gives rea-

¢ sonably good data collapse over the time scales and system
C(r,t)=r —zog(_) _ (6)  Sizes studied. Figure 4 shows the scaled daté=d. It may

T

rZ

10 r——T—T—7 7
For small separations<t?, this scaling form implies i I l l I £=58_
scale-free correlations, i.e(r,t)~r ~ 2%, characteristic of a L=100--- ]
fractal with fractal dimensiod;=d—z#. On the other hand, -
over larger length scale§(r,t)~t~ ¢ which is indicative of
the absence of any spatial correlations. This scaling descrip-
tion was introduced by ugt,5] in the context ofA+A— O
model, and later verified numerically in a two-dimensional
Ising model[6] also.

To check the finite-size scaling form given by E&), we
simulate Ising spin systems of various sizes in spatial dimen- p1le—u
siond=1 to 4. Starting from a random initial configuration, 10?107
the spins are quenched to zero temperature and are updated
sequentially using the Glauber updating rule by which a spin |G, 3. The scaling functiofi(x) = L?P(t,L) is plotted against
is always flipped if the resulting energy changd=<0, the dimensionless scaled tinxe=t/L? for threeL values in thed
never flipped ifAE>0, and flipped with probability; if =3 Glauber Ising model. The observed data collapse has been ob-
AE=0. One MC time step was counted after every spin intained forz=2.05 and§#=0.166.
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FIG. 4. The figure shows the scaled probability plotted against FIG. 6. Same as Fig. 5, except that the scaling funcfion
the dimensionless scaled time in ttie 4 Glauber Ising model. We =L*’P(t,L) is plotted against the dimensionless scaling variable
have fixedz=2, and find that¢=0.12+0.02 gives the best data X=t/L* The data for different values were found to collapse well
collapse. to a single curve fol=0.186 andz=2.05+0.04.

be mentioned that id=4, earlier simulations had suggested The constantx has been estimated to be0.14[17,18 and
that the persistence decay might be slower than a power lavz0.18 [19] by different authors. Fod=1, 2, and 3, the
and perhaps logarithm[d0]. However, the agreement of our exponent values are found to #=0.12, 0.18, and 0.23,
data with the scaling form Eq2) suggests that persistence respectively.

follows a power-law decay id=4 also. Ford>4, blocking To simulate Eq(7) numerically, we use the finite differ-
of spins has been shown to lead to a limiting valu®¢f,L) ence Euler discretization scheme on cubic lattices%sites
ast—oo, which is independent df [10]. We could simulate  [17,18]:

only small lattice sizes fod=5 from which we cannot make
any conclusive remark at this stage.

In the diffusion problem, we have a scalar fiefgx,t)
evolving according to the diffusion equation. The initial val-
ues ¢(x,0) are taken to be independent random variables
with zero mean. wherex’ runs over all the @ nearest-neighbor lattice sites of

x in the cubic lattice an@=At/(Ax)?< 1/2d for stability of
dp(x,t) _, the discretization scheme. We have taken1/4d in our
T:V d(x0), simulations as this value has been observed to provide the

@) fastest approach to the asymptotic regirh@].
(p(x,00(x',0))= S (x—x"). For the diffusion problem, simple scaling arguments sug-
gest that the dynamical exponent 2 in all dimensions. In

For this problem, it has been shown using approximatell dimensions studied, we found excellent scaling collapse
analytic theorieg17-19 that P(t)~t~? in all dimensions. with z=2 and thed values quoted above. Upon substitution
The predicted exponent values in low dimensions were irof the exponent values into E€L), it can be easily seen that
good agreement with simulation results. The exponenthe condition for fractal formation is satisfied fde=1, 2,
was found to increase with dimension, and has been sugnd 3. Ford=1, this has already been confirmed by an ear-
gested to have the asymptotic valdéd)=«+d asd—o. lier numerical study2]. Our results for the persistence prob-
ability and the scaling function for three different lattice
sizes ind=2 is displayed in Figs. 5 and 6.

It is also possible to extrapolate these results to dhe
—oo limit using the asymptotic form suggested for We
see that in this limit, the LHS of Eq1) vanishes as 1/d,
leading us to conjecture that fractal formation persists in all
dimensions for the diffusion problem.

In conclusion, we have proposed a finite-size scaling an-
satz for the persistence probability in a coarsening system.
The scaling form corresponds to the fractal structure and
dynamic scaling characterizing the spatio-temporal evolution

BT Y E SEINY EAPIT ST B of the persistent set. We check the scaling form numerically
1 10 10° 10° 10! 1° for the Glauber-Ising model and for the diffusion problem.
t Finite-size scaling enables us to study persistence reliably in

FIG. 5. The persistence probabm‘y(t’L) is p|0tted against h|gher dimensions. Our resultS agree W|th the kI’IOWﬂ VaIUeS
time t (measured as the number of MC stefar three different  Of 6 in the case of the Ising modéirom d=1 to 3 and in
lattice sized. in the d=2 diffusion problem. the diffusion problenfwe have checked up tb=3). For the

dXt+A) = (X, t)+a] D d(X,t)—2dd(xt)|, (8)

P, L)
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d=4 Ising model, we find the signature of algebraic decay ofof the manuscript and valuable suggestions. G.M. gratefully
persistence withd=0.12, in contrast with what had been acknowledges the hospitality received at The Abdus Salam
reported earlief10]. ICTP, Trieste, Italy, where this work was done. G.M. also
thanks C. Sire, S. N. Majumdar, and A. J. Bray for helpful
We thank G. I. Menon and D. Dhar for a critical reading discussions and illuminating remarks.
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